Untangling the Woven Web:
Testing Web-based Software

Gary McGraw, Ph.D. David Hovemeyer

Reliable Software Technologies Corporation
21515 Ridgetop Circle, Suite 250
Sterling, VA 20166
(703) 404-9293
http://www.rstcorp.com
gem@rstcorp.com daveho@rstcorp.com

April 1, 1996

1 Introduction

In the early 90’s, public interest in the Internet skyrocketed with the introduction of web
browsers and hyper text markup language (HTML). As the world-wide web becomes more
commercial and people start using browsers to purchase products and do other business,
issues of website testing become more and more critical. In addition to web-based commerce,
Intranets have also recently become a hot topic.! This paper focuses on three general issues
in web testing that are applicable to all web-based products: 1) automating remote testing
of websites, 2) developing software assessment techniques for Java applets, and 3) issues in
website security.

2 Automated Website Testing

As is the case for all software products, part of creating a good website is extensively testing
the product. The web presents some interesting new twists on software assessment. One
such twist is that web documents present a moving target as they are constantly evolving and
changing. More than any other information medium, it is the nature of the web to remain up-
to-date. Another twist has to do with the inherently net-based nature of websites. Obviously,
websites are “on the net”. This means that remotely testing websites over the net is a distinct
possibility. In fact, the distributed nature of the web virtually mandates that a web testing
environment be net aware. Finally, the interactive nature of many web documents (e.g.,
forms), makes testing websites more involved than simply following hyperlinks.

Automated web-testing has a history as long (or short?!) as the web itself. In this
section we will touch on some existing technologies, discuss general issues in website testing
automation, and explore the idea of testing websites with scripts.

2.1 The ideal web testing environment

In order to test websites as thoroughly as possible, a web testing environment should have
the following characteristics:

1. Tests must duplicate as closely as possible the ways in which users interact with web-
sites. There are many layers of software between the user and a web server. Ideally,
a test should be able to duplicate all events that would happen if the test were being
executed by an actual user so that it properly tests all of the software layers.

2. Tests must exercise all features supported by browsers and servers that will be used when
the site is in operation. Web technology is evolving rapidly. In particular, Netscape
browsers and servers implement many extensions to published web standards such as

HTML and hyper text transfer protocol (HTTP). Ideally, tests should handle these

extensions.

!The difference between Internet and Intranet is that Intranet networks are “in house” (within an orga-
nization), whereas Internet networks connect an organization “to the rest of the world”.

3. Tests should be able to “understand” (at the appropriate level) the test scenarios that
they are tmplementing. Blindly following hyperlinks is not always adequate. A test
should be able to verify that particular features of the web documents it tests are
present and function as advertised. When such features are activated, test should
ensure that they produce the correct responses. The best way for a test to perform
this type of content analysis is for the test to analyze the HTML source code of the
documents being sent from the server.

2.2 Why web testing is not easy

The main reason that automated web testing is not easy is because there are many layers of
software between the user and the actual documents on a web site:

User

Windowing system
Web browser
HTTP protocol
Operating system
Network

HTTP server
HTML document

The test environment must be able to “plug in” at an appropriate level. This is important
because there are many types of information that are useful to a test script. For example,
all of the following might be critical to the determination of whether or not a test has been
passed: the HT'TP headers of a received protocol message, the HTML source of the document
being accessed, and the pixels of a rendered graphic. In order to access the headers of the
HTTP message, a script must have very low-level access (i.e. at the network level). In order
to access the HTML source of a document, medium-level access is required. In order to
check rendered graphics, high-level access (at the browser level) is required.

Generally speaking, the browser acts as the bridge between the low level network messages
and the high level rendered fonts and graphics seen by the user. This means that in theory
all of the interesting levels (from the HTTP protocol, through HTML source, up to graphics
— and everything in between) are available “inside” the browser. A testing environment
which could gain access to the events taking place inside the browser would effectively have
access to all this “interesting” information. Unfortunately, browsers have a tendency to hide
all of this interesting information.

GUI capture/replay tools provide access to a very high-level of information (including
rendered fonts and graphics and GUI interaction) but not medium- and low-level information
(HTML, HTTP). This makes it particularly hard for capture/replay approaches to identify
HTML document features that should be dealt with in an ideal testing environment.

Another testing approach is to write test scripts that interact directly with the web
server — effectively imitating a web browser. While this approach ignores the browser and
window system layers of web software, it has the considerable advantage of allowing access

to network-level (HTTP) and document-source—level (HTML) information. Unfortunately,
this approach also has the disadvantage of not precisely modeling the interaction between
a user and a web server. In addition, a script-based approach requires that the scripting
language possess the ability to communicate with a web server in addition to perform anal-
ysis on the content of received documents. However, the perl? scripting language and the
libwww-perl® add-on package provide a very good foundation upon which to implement a
web scripting system.

It is possible to implement a test environment that combines the strengths of both cap-
ture/replay and scripting approaches. The test environment could record both GUI events
(through capture/replay) as well as network communication between the browser and server.
This type of technology may eventually make all of the characteristics of our ideal testing
environment a reality.

2.3 Making testing effective

The possession of an ideal test environment does not necessarily mean that web testing will
be as effective as possible. We suggest two general strategies for maximizing the effectiveness
of automated web testing: testing interactivity and website consistency.

The first strategy is to concentrate testing efforts on those parts of a website that require
the most complicated user interaction. Interactive forms, for example, provide the typical
interface to programs running on web servers. Such programs take the information submitted
by the user, use it to perform some computation or action, and present the results of the
action back to the user. For example, a form might be used to submit a query to a database
program and present the results of the query back to the user. Since the form is implemented
as a program with complex input and output, it is important to develop a set of test cases
that fully exercise the program’s functionality and verify its correct operation.

The second strategy is actually a website design strategy. Simply put: consistency is the
key. It is important to keep any website’s user interface as consistent as possible. Developing
a comprehensive set of test cases does no good if the tests are constantly being rendered
useless by changes to the structure of the website. Though a site’s content may change, its
general “look and feel” should not (especially once a reasonable design has evolved). Note
that the second strategy applies equally to a website’s interactive sections.

2.4 Tools for Web Testing

There are many tools currently available for website testing. This section briefly describes a
few of them.

Zperl is a Unix scripting language available at URL http://www.perl.com.
3The libwww-perl library can be found at URL http://www.sn.no/ aas/perl/www/.

2.4.1 Link Testers

Link testing programs navigate a web site, checking to see that all hyperlinks refer to valid
documents. Since this type of testing can be done completely without human intervention,
link testing programs are a very useful part of the web tester’s toolkit.

‘ Name of tool ‘ Comments ‘

CheckBot o configurable for sites and paths to check
o generates HTML report of search results
o http://dutifp.twi.tudelft.nl:8000/checkbot/
EIT Link Verifier Robot | o configurable for sites, search strategy, etc
o generates HTML report of search results

MOMSpider o highly configurable (can specify sites and pages)

o free: http://wwuw.ics.uci.edu/WebSoft/MOMspider/
o does not handle forms or netscape extensions

RST Link Tester o can navigate arbitrary HTML content

o handles netscape extensions (HTML and HTTP)

o currently in Alpha testing

Table 1: Tools for testing links.

2.4.2 Test script development environments

Software for developing scripts for test scenarios is only now becoming available. Such tools
allow scripts to be specified in complete detail and then executed automatically. One example
of such a tool is Pure Software’s Performix. Pure Performix combines a GUI capture/replay
tool with an HTTP capture tool, allowing scripts to control both GUI events and network
events.* RST also has a script development web-testing product in the works.

3 Testing Java Applets

The power of HI'ML has been recently and radically expanded with the introduction of Sun
Microsystem’s Java programming language. Java allows for the development of platform-
independent programs that run on webpages. Java significantly expands the ability of web-
masters to provide interactive, dynamic web content including: animation, GUI interfaces,
complex computations, file I/O and data structures.

As the Java programming environment matures and Java starts to be used to create
“real” applications, programmers will require that sophisticated software engineering tools
be co-opted from C and C++ development environments for use with Java. Software testing
tools make up one important class of these software engineering tools. This section briefly
describes some of the issues that we encountered while converting a C/C++ code coverage

4See URL http://www.pure.com/products/pureperformix/index.html for more information.

4

tool for use on Java code. Our successful conversion resulted in the first code coverage tool
suitable for use in testing Java applets [Binns and McGraw, 1996].

Many proficient C and C++ programmers find coming up to speed in Java a fairly
straightforward task. However, these programmers have become accustomed to having a
large set of development tools at their fingertips. It is clear that making these tools available
for Java is an important step in creating a solid Java development environment. Developers
creating such tools are forced to grapple with some fundamental differences between Java

and C/C++.

One good thing about the Java programming language and environment is that many of
the development tools that other commercial-grade languages have enjoyed can be adapted
for use in Java. This is a direct result of the common ground that Java shares with C++4.
With this in mind, Reliable Software Technologies recently took on the task of enhancing a
version of the popular C/C++ code coverage tool the PiISCES Coverage Tracker’™ so that
it could operate on Java code.” Throughout the development of our Java coverage tool, we
discovered that many of the standard techniques for performing dynamic analysis on C and
C++ programs were not amenable to the Java programming environment.

Before we go on, we must briefly introduce the concept of code coverage [Myers, 1979].
The PiSCES Coverage Tracker for Java™ (Java Tracker) is a code coverage measurement
tool. Given a set of test cases and the source code for a program (in the current case a
Java applet or application), Tracker measures which parts of the source code are “exercised”
during program execution on the test cases. Code coverage is meant to aid in the development
of a thorough and rigorous set of test cases and helps a programmer ensure that every
aspect of a piece of code is exercised during the testing phase. The C/C++ version of
Tracker provides many sophisticated coverage measurement techniques: function, branch,
condition/decision, and multiple condition coverages. The Java Tracker prototype currently
supports function and branch coverages. Function coverage measures which subset of defined
functions have been exercised during execution over a given test set. In the Java case, this
amounts to a coverage measurement over methods associated with a class. Function coverage
is the most basic level of coverage. Branch coverage (also known as decision coverage)
measures the number of explicit branches that are exercised during testing on a test set
(e.g., which specific branches of a case statement have been tested). Branch coverage returns
numbers that are relative to the total number of branches in the source code.

Coverage measures are achieved by a software tool that is inserted into the compilation
pipeline. In this pipeline, a pre-processor is invoked on the source code. The original source
code itself is left intact, but new code is inserted by the coverage tool. The inserted code
performs the work of recording what pieces of the original program have been executed. This
process is known as “code instrumentation”. Coverage information is stored dynamically as
the instrumented program is executed. For this reason, coverage measurement is known as
a dynamic software analysis technique.

In the development of Java Tracker, we were forced to change the way coverage instru-
mentation is integrated into the compilation pipeline. This was a direct result of divergent

>The PiSCES Coverage Tracker’ and the PiSCES Coverage Tracker for Java!™ are part of Reliable
Software Technologies Corporation’s PiISCES Software Analysis Toolkit(").

build environments for Java and C/C+4. But not only is the compile-time pipeline different,
the run-time environment is different too.

The Java applet /application run-time environment is different in many critical ways from
the usual C and C+-+ environments. The main difference has to do with the level on which
the language allows access to the machine. C and C+4++ can access a machine at the “bare
metal” level, meaning that many interesting programming tricks can be performed in order
to improve tool performance. This is important in a competitive environment where the
performance of a tool is critical to its utility and ultimately to its commercial success. For
Java, on the other hand, access to the machine is severely limited (mostly because of security
concerns).

The same features that make Java so attractive to developers turn out to make creating
software engineering tools problematic. For example, in C and C++4, a tool can easily trap
signals, start child processes, communicate with the operating system, etc. Nearly all of these
kinds of low-level functions are restricted in Java, severely so for an applet running across a
network. We have explored some possible solutions to these problems in the development of
Tracker, but no clear-cut answers are available, and much work remains to be done.

We have been forced to address many problems head-on throughout the development of
the PiSCES Coverage Tracker for Java™ (now available free on the net at
http://www.rstcorp.com/java.html). As we do more Java development and craft so-
lutions to these problems, more questions are raised and better solutions are discovered. We
encourage all Java developers to devise a reasonable and thorough testing strategy before
releasing their applets. The Java Tracker should prove useful to such efforts.

4 Website Security

One of the fundamental concerns that Internet users have (and rightly so) is site security.
Web-based documents and services have no special immunity to attacks. In fact, several
very serious security flaws have recently been revealed that cast doubt on many of the claims
made by vendors regarding the security of their web browsers and other products. The Java
language bugs are the most serious and involve security holes that have not yet been patched.
In this section we will briefly mention several such security holes. The purpose of this list
is to stress the essential role that software testing should play in web-product development.
The fact is that security concerns are especially important for web-based products because
such products have more exposure to attack than usual.

Netscape encryption bugs: Encryption plays a key role in setting up secure transactions
for web commerce. As such, Netscape has made a major effort to enable safe encrypted
communication between websites and clients. Unfortunately, Netscape’s implementa-
tion of the RSA encryption algorithm was buggy. David Wagner of Berkeley discovered
a mistake in Netscape’s pseudo-random number generator that could be exploited to
break the encryption. The Netscape encryption algorithm has since been patched
[Levy, 1996].

Bypassing Netscape’s security manager: Godmar Back, a Computer Science student
at the University of Utah, has published a webpage explaining how to circumvent
Netscape’s security manager. It is possible to disable Netscape’s security manager
by replacing it with a Null manager so that Netscape allows file access through Java
applets. (Note that Java applets are not supposed to be able to read and write arbitrary
files.) This can be done by changing a few bytes of Netscape’s executable file with any
sort of hex editor. [Back, 1996]

Jumping firewalls with Java: Researchers at Princeton have discovered a serious security
problem with Netscape Navigator’s 2.0 Java implementation. (The problem is also
present in the 1.0 release of the Java Development Kit from Sun.) A Java applet is
normally allowed to connect only to the host from which it was loaded. However,
this restriction is not properly enforced. A malicious applet can open a connection to
an arbitrary host on the Internet. At this point, bugs in any TCP/IP-based network
service can be exploited. If the user viewing the applet is behind a firewall, this
attack can be used against any other machine behind the same firewall. The firewall
will fail to defend against attacks on internal networks, because the attack originates
behind the firewall. Netscape has made a patch available to cure this security problem

[Dean et al., 1996].

CGI security holes: CERT reports that a security vulnerability has been reported in ex-
ample Common Gateway Interface (CGI) code, as provided with the NCSA httpd
1.5a-export and APACHE httpd 1.0.3 (and possibly previous distributions of both
servers) [CERT, 1996]. The example code contains a library function that contains
a vulnerability. As a result of this problem, a remote user may retrieve any world
readable files, execute arbitrary commands, and create files on the server with the
privileges of the httpd process that answers HTTP requests. This may be used to
compromise the http server and under certain configurations gain privileged access.

Several workarounds are possible and are listed in the CERT Alert [CERT, 1996].

Major Java Security Hole: [Dean et al., 1996] The same researchers at Princeton who
discovered the Firewall Jumping problem have discovered another serious security flaw
in the Java programming language. This one allows a malicious Java applet running
under Netscape Navigator (version 2.0 or 2.01) to execute arbitrary machine code.
Using this hole, they have implemented an applet that exploits the flaw to remove a
file. No fix for this hole has been issued as of March 28, 1996 [Dean et al., 1996].

It is clear that security concerns for web-based products are legitimate, and are not just
so many cries of “wolt”. The existence of such holes points out a real need for some sort
of automated security testing geared toward use on web products. We believe that testing
for security is an important research endeavor that the software testing community should
explore. At RST, an ARPA-sponsored research project into security testing is underway.
One important application of our work will be a tool that can assess website security.

5 Conclusions

In this paper, we have addressed three major issues of testing web-based software: automat-
ing web testing, developing testing techniques for Java applets, and website security testing.
As companies migrate toward web-based computing (including both Internet and Intranet
usage), these issues will become even more important than they are today. Testing web-based
software is clearly an area that is ripe for the application of software testing expertise.

Acknowledgments

Part of Dr. McGraw’s research on security issues is sponsored by ARPA under contract number
F30602-95-C-0282. Mr. Hovemeyer’s work on web testing is partly funded by NIST’s Advanced
Technology Program under award number TONANB5H1160. THE VIEWS AND CONCLUSIONS
CONTAINED IN THIS DOCUMENT ARE THOSE OF THE AUTHORS AND SHOULD NOT BE INTERPRETED
AS REPRESENTING THE OFFICIAL POLICIES, EITHER EXPRESSED OR IMPLIED, OF THE ADVANCED
RESEARCH PROJECTS AGENCY, THE DEPARTMENT OF COMMERCE, OR THE U.S. GOVERNMENT.

References

[Back, 1996] Back, G. (1996). How to bypass netscape’s security manager. Web docu-
ment at URL: http://www.cs.utah.edu/ gback/netscape/bypass.html. Also posted
to comp.lang..java 1/29/96.

[Binns and McGraw, 1996] Binns, A. and McGraw, G. (1996). Building a java software
engineering tool for testing java applets. In Proceedings of the Intranet96 NY Conference,

New York.

[CERT, 1996] CERT (1996). Cert alert ca-96.06. CERT stands for Computer Emergency

Response Team.

[Dean et al., 1996] Dean, D., Felton, E., and Wallach, D. (1996). Java se-
curity: From hotjava to mnetscape and beyond. Web documents at URL:
http://www.cs.princeton.edu/ ddean/java. Also see the related CERT Alert docu-
ment CA-96.05.

[Levy, 1996] Levy, S. (1996). Wisecrackers. Wired Magazine, 4(3):128-134 and 196-202.

[Myers, 1979] Myers, G. J. (1979). The Art of Software Testing. Wiley-Interscience, New
York, NY.

